
22 The Delphi Magazine Issue 29

Under Construction:
Website Indexing, Part 1
by Bob Swart

This month, we continue our
Delphi internet solutions cov-

erage with the first of a two part
series on the implementation of a
mini website search engine,
starting with a website page scan-
ner, index generator and (single)
keyword finder, called IndexBob.

If you’ve ever visited Alta Vista
or Yahoo you already know what a
search engine is: a place where you
can specify keywords in an editbox
(sometimes using AND, OR, NOT and
NEAR) and a Search button that
starts a process of looking in a big
database for you, coming back
with a list of webpages (URLs) that
contain these keywords. Usually
this takes some seconds and
results in a large number of hits,
which is why some search engines
also have information to help
people specify the most effective
way to construct search queries.

Another phenomenon is a dedi-
cated (local) website search
engine that you can only use to
search in the sub-webpages of one
website. Microsoft has something
like this on their website, where
you can search for keywords on all
or part of their website, and so
have many other organisations
(like yours when you’ve finished
reading this article). This kind of
mini search engine offers welcome
support for visitors to a website
and should be placed on the main
page (so visitors will see it right
away).

In this two-part article we’ll build
our own local website search
engine.

Website Search Engine
Let’s first try to image what a web-
site search engine would look like.
Basically, there are two
approaches: dynamic and static.
The dynamic approach involves
active searching (parsing) of some
or all the pages in the website,

looking for a set of keywords, at the
time the user requests the search.
This takes time, but at least you
know you’re searching the real
pages. The static approach
involves generating an index of all
the keywords found in the web-
pages. This means we need a web-
site indexing program to build the
index. Searching for keywords
then consists of looking them up in
the index and returning the web-
pages associated with these key-
words. This is way faster than the
dynamic approach, but we must
take care to keep the index up to
date. For that reason, this latter
approach is best suited to rela-
tively quite websites, or those
where the webmaster is the only
one to make updates, after which
s/he can run the index program
again to re-index the entire web-
site. For an open company intra-
net, for example, where every
employee can update pages, the
static solution would likely be
unsuitable.

For my own website (which is at
www.drbob42.com if it’s not
already on your favorites list!) and
many others the static approach is
ideal, as long as the webmaster
remembers to re-index the site

after each update! So, I’ve decided
to implement the static approach
in this article.

Website Scanning
One of the first things we must do
to write a static website search
engine is analyse the website. How
many sub-webpages are involved?
How big is the longest (key)word?
And so on.

Let’s first decide what is a key-
word and what is not, because that
can have a big impact on the size of
our index. For now, I’ve defined a
keyword as starting with an alpha-
betic character and also optionally
containing numeric characters
and the + or – characters. This
means that iTec is a valid keyword
and so are UK-BUG, IE4 and C++, but
Dr.Bob fails (I can live with that, as
the search engine is already on my
website!). So here’s the definitions:

const
IdentSet = [‘A’..’Z’,
’a’..’z’, ’0’..’9’,
’-’, ’+’];

StartSet = [‘A’..’Z’,
’a’..’z’];

With these two sets we can write a
scanning application, upload it to

➤ Figure 1

January 1998 The Delphi Magazine 23

the cgi-bin directory of our website
(this assumes you indeed have a
cgi-bin directory on your web
server with execution capabilities,
by the way). Assuming that the
scanning application (let’s call it
“scanner” from now on) is exe-
cuted from the cgi-bin directory,
we need to do a ChDir to the root
directory of the website (maybe
one directory higher or some-
where else). Now that we’re in the
root of the website, we can recur-
sively search for all the files in the
current and sub-directories
(remember that the scanner is a
just another local application on
the web server, so we don’t need to
use any difficult internet protocols
here, just file operations). Using a
FindFirst ... FindNext ... Find-
Close loop we can search for all
files on the website. If a file has the
.HTM or .ASP (Microsoft active
server page) extension I assume

it’s a valid file to be indexed (you
generally don’t want to index
binary files), so these files are
opened and parsed for keywords.

There are a few special cases
that we must exclude. First of all,
some webmasters maintain their
websites using Microsoft Front-
Page. While I won’t say anything
bad about this tool, FrontPage has
the habit of generating extra direc-
tories (starting with an under-
score, such as _VTI_CNF) and files
with FrontPage-specific mainte-
nance and configuration informa-
tion. These are not the kind of files
you’d want to include in your
index. Nor are the files with the
.BAK extension (and sometimes
the backup of HOME.HTM gets
written to HOME.HTM.BAK), so we
can only accept a file with .HTM or
.ASP in its name if there isn’t a .BAK
in there as well.

Keeping these restrictions in
mind, we can be relatively sure not
to scan any unwelcome webpages

(at least until someone finds
another set of seemingly valid
pages that need to be excluded as
well: let me know if you find some).

The code for SCANNER.DPR (see
Listing 1) keeps track of the
number of webpages that are
opened and the length of the long-
est keyword. Note that I ignore any-
thing between < and > characters,
so HTML tags and their (internal)
contents are effectively ignored
here. I decided not to base my web-
site indexing on HTML Meta-Tags,
but you could easily adapt these
techniques to do that if you prefer.

After processing, these values
are printed in an HTML output, so
we can execute SCANNER.EXE
from our cgi-bin directory and view
the resulting HTML in a web
browser. Figure 1 shows sample
output.

Note that it takes only 0.82 sec-
onds to scan my entire website of
199 pages. Of course, during inter-
net peak hours (when the web

➤ Listing 1

{$APPTYPE CONSOLE}
{$I-}
uses
SysUtils;

const
website = ‘http://www.drbob42.com’;
IdentSet = [‘A’..’Z’,’a’..’z’,’0’..’9’,’-’,’+’];
StartSet = [‘A’..’Z’,’a’..’z’];

var
f: Text;
MaxFileName, MaxKeyword, Str: ShortString;
{ absolute = shortstring “length” hack }
MaxLen: Byte absolute MaxKeyword;
Len: Byte absolute Str;
WebPages: Word = 0;
Size: LongInt = 0;

procedure ScanFiles;
var
SRec: TSearchRec;
NotInTag: Boolean;

begin
if FindFirst(‘*.*’, faDirectory, SRec) = 0 then
repeat
if (SRec.Attr AND faDirectory) = faDirectory then
begin
if (SRec.Name[1] <> ‘.’) then
{ skip ‘.’ and ‘..’ }
if Pos(‘_vti’,SRec.Name) = 0 then begin
{ _vti_cnf etc. }
ChDir(SRec.Name);
if IOResult = 0 then begin
writeln(‘<I>’,SRec.Name,’</I>’);
writeln(‘’);
ScanFiles; { recursive!! }
writeln(‘’);
ChDir(‘..’)

end else
writeln(‘<I>’,SRec.Name,’</I> - locked’)

end
end else if ((Pos(‘.HTM’,UpperCase(SRec.Name)) > 0) or
(Pos(‘.ASP’,UpperCase(SRec.Name)) > 0)) and
(Pos(‘.bak’,SRec.Name) = 0) then begin
{ file }
writeln(‘’,SRec.Name,
‘ (‘,SRec.Size,’ bytes)’);

Size := Size + SRec.Size;
assign(f,SRec.Name);
reset(f);
if IOResult = 0 then begin
Inc(WebPages);
NotInTag := True;
while not eof(f) do begin
Len := 0;
while not eoln(f) do begin
Inc(Len);

read(f,Str[Len]);
if not (Str[Len] in IdentSet) then begin
Dec(Len);
if (Len > MaxLen) and NotInTag then begin
MaxKeyword := Str;
MaxFileName := SRec.Name

end;
if Str[Len+1] = ‘>’ then
NotInTag := True

else
if Str[Len+1] = ‘<‘ then
NotInTag := False;

Len := 0
end else
if (Len = 1) then
{ start with letter ?? }
if not (Str[1] in StartSet) then
Len := 0

end;
if (Len > MaxLen) and NotInTag then begin
MaxKeyword := Str;
MaxFileName := SRec.Name

end;
readln(f)

end;
close(f)

end
end

until FindNext(SRec) <> 0;
FindClose(SRec)

end {ScanFiles};
begin
ChDir(‘..’); { get out of cgi-bin }
if IOResult <> 0 then { skip };
writeln(‘content-type: text/html’);
writeln;
writeln(‘<HTML>’);
writeln(‘<BODY BACKGROUND="/gif/back.gif">’);
writeln(‘<H2>IndexBob</H2>’);
writeln(‘Scanning website ‘,website);
writeln(‘<P>’);
writeln(‘’);
ScanFiles;
writeln(‘’);
writeln(‘<HR>’);
writeln(‘Longest Keyword: ‘, MaxLen,
’ =[‘,MaxKeyword,’] in ‘,MaxFileName);

writeln(‘
Number of Webpages: ‘,WebPages,’ (‘,
Size div 1024,’ Kbytes)’);

writeln(‘<HR>’);
writeln(‘</BODY>’);
writeln(‘</HTML>’)

end.

24 The Delphi Magazine Issue 29

server is getting more simultane-
ous requests) performance might
be lower.

Analysis Results
The results of running the Scanner
CGI application on my website is as
follows: 199 webpages, using 1240
Kb, with the longest keyword being
30 characters. Based on that infor-
mation, I can define a structure for
the webpage URLs and keywords
we’re about to index.

First of all, if I limit the number of
webpages to 255, I can keep their
number in a set, and store their
names (the actual URLs) some-
where else. This means I can use
one set of 1..255 to store the web-
pages where a specific keyword
occurs, which means it takes 255
bits, that is 32 bytes, to store the
webpage/keyword information for
each keyword.

The maximum keyword length is
currently 30 characters. However,
this may change in the future, so I
define a keyword as a String[31]
(one character extra), which also
takes 32 bytes (remember the
length byte).

Combined, this means I need 64
bytes for each keyword to store the
entire keyword information (key-
word name with webpage bitset)
and an additional string for each
webpage or URL (up to 255 extra
strings, as we noted earlier). See
the declarations in Listing 2.

The entire structure of all the
TNode records needs to be built
while parsing the webpages in
order to build the index. This struc-
ture must have a quick search facil-
ity, since we need to locate an
existing keyword to add a webpage
“bit” to the set of webpages where
that keyword occurs, or insert a
new keyword information record.
So, the entire structure should at
least be sorted and preferably use
a fast algorithm for searching. I’ve
decided to use a simple binary tree
approach, which means that if I
store N keywords I will only need
O(log N) comparisons for each new
keyword or update. This approach
still means I can keep the applica-
tion small and yet fast.

First, we need to define the TTree
class itself (Listing 2). The Keyword

data is stored in a field of type TNode
and other than that we need two
additional pointers to a sub-tree.
We can define the tree to be alpha-
betically sorted on Node.Keyword,
so the Prev sub-tree will hold all
keywords “before” the current one
and the Next sub-tree will hold all
keywords “after” the current one.

The constructor is called from
within a routine that found a key-
word inside a webpage. So, while
constructing the a new tree-item (a
new leaf) we can immediately
assign the keyword and initial web-
page where we found this keyword.
I also increase a global Keywords
counter to keep track of the
number of keywords that are found
and the corresponding number of
tree items that are created. Note
that the Prev and Next sub-trees are
set to nil, so this constructor effec-
tively adds a “leaf” to a tree (with
the potential to grow).

The use of this Create construc-
tor (Listing 2) is embedded in the
function AddKeyword, which in its
turn is being called by the routine
that’s parsing the current web-
page. AddKeyword gets the current
(found) keyword as an argument,
as well as the number of the cur-
rent webpage which is being
parsed.

A global variable root contains
the “root” of the TTreeof keywords.
If no keywords have been found the
root variable is nil. So AddKeywords
checks the value of root and if it’s
nil we just create a new TTree and
place it in the new root. If the root
exists, we compare the new Key-
word to the root.Node.Keyword. If the
Keyword argument is “bigger” than
(ie alphabetically comes after) the
root.Node.Keyword we try the same
comparison with the Prev sub-tree.
If the Keyword argument is “smaller”
we try the same comparison with
the Next sub-tree and repeat this
until we either find an end-leaf (ie
no more subnodes) or a match for
the keyword.

If the keyword isn’t already in
the tree we create a new node,
passing the keyword and webpage
ID to the constructor. Otherwise,
we only need to add the webpage
ID to the set of URLs (see AddKey-
word in Listing 2).

The destructor’s only purpose is
to make sure all the nodes of the
tree are destroyed and it’s fairly
simple: each node should first
destroy the Prev subtree, followed
by the Next subtree, followed by
the destruction of the node itself.

When writing the binary tree to
disk, it’s very important to keep the
sorted order, so we can read the
binary tree in sorted order again
(for the IndexBob main search
engine application). See WriteTree
in Listing 2.

WebSite Indexing
If we connect the scanner file pars-
ing algorithm with the AddKeyword
routine we end up with a binary
tree of keywords. A binary tree is
most efficient if each subtree has
the same depth: a balanced binary
tree. Of course, reading a number
of webpages and creating nodes in
the places where the new key-
words belong doesn’t guarantee a
balanced binary tree, but rather a
random binary tree. Fortunately,
the tree will never be truly deep
(unless we read a webpage where
all the words are sorted to begin
with) and the tree is only con-
structed once (during indexing)
and will be written out to disk as
soon as we’re done.

With so much functionality in
the entire Index unit (Listing 2), all
that the main indexing program
needs to do is declare itself a CON-
SOLE type application, and include
the Index unit in the uses clause as
follows:

{$APPTYPE CONSOLE}
uses Index;
end.

The index application itself writes
the result with HTML tags to the
standard output, so like SCAN-
NER.EXE we can run this program
(INDEX.EXE) from the cgi-bin
directory, just like another stan-
dard CGI application. Where the
scanner took less than a second to
execute and return the HTML
result, the indexer takes between 1
and 3 seconds to index my entire

➤ Facing page: Listing 2

January 1998 The Delphi Magazine 25

unit Index;
{$I-}
interface
const
website = ‘http://www.drbob42.com’;
IdentSet = [‘A’..’Z’,’a’..’z’,’0’..’9’,’-’,’+’];
StartSet = [‘A’..’Z’,’a’..’z’];
MaxPage = 255;

type
TNumPage = 0..MaxPage; { max number of webpages in site }
TURLPage = ShortString { assuming URL <= 255 characters };

var WebPages: TNumPage = 0;
WebPage: Array[TNumPage] of TURLPage;

const MaxKeyword = 31;
type
TKeyword = String[MaxKeyword];
TPageSet = Set of TNumPage;
TNode = record
Keyword: TKeyword; { 32 bytes }
URLs: TPageSet; { 32 bytes }

end {TNode};
TTree = class
Node: TNode;
constructor Create(const Keyword: TKeyword;
WebPage: TNumPage);

destructor Destroy; override;
private
Prev,Next: TTree;

end {TTree};
var
Keywords: Integer = 0;
root: TTree = nil;

type
TIndexFile = File of TNode;

implementation
uses SysUtils;
constructor TTree.Create(const Keyword: TKeyword;
WebPage: TNumPage);

begin
inherited Create;
Inc(Keywords); // keep track of number of keywords
Prev := nil;
Next := nil;
Node.Keyword := Keyword;
Node.URLs := [WebPage]

end {Create};
destructor TTree.Destroy;
begin
if Prev <> nil then Prev.Free;
if Next <> nil then Next.Free;
inherited Destroy

end {Destroy};
procedure AddKeyword(const Keyword: TKeyword;
WebPage: TNumPage);

var tmp: TTree;
begin
if root = nil then
root := TTree.Create(Keyword,WebPage)

else begin
{ search }
tmp := root;
repeat
if tmp.Node.Keyword > Keyword then begin
if tmp.Prev = nil then
tmp.Prev := TTree.Create(Keyword,WebPage);

tmp := tmp.Prev
end else
if tmp.Node.Keyword < Keyword then begin
if tmp.Next = nil then
tmp.Next := TTree.Create(Keyword,WebPage);

tmp := tmp.Next
end

until tmp.Node.Keyword = Keyword;
tmp.Node.URLs := tmp.Node.URLs + [WebPage]

end
end {AddKeyword};
procedure ScanPage(const FileName: ShortString;
WebPage: TNumPage);

var
f: Text;
NotInTag: Boolean;
Keyword: ShortString;
Len: Byte absolute Keyword; {absolute = shortstring “length” hack}

begin
assign(f,FileName);
reset(f);
if IOResult = 0 then begin
writeln(‘’,FileName,’’);
NotInTag := True;
while not eof(f) do begin
Len := 0;
while not eoln(f) do begin
Inc(Len);
read(f,Keyword[Len]);
if not (Keyword[Len] in IdentSet) then begin
Dec(Len);
if (Len > 2) and NotInTag then
AddKeyword(LowerCase(Keyword),WebPage);

if Keyword[Len+1] = ‘>’ then
NotInTag := True

else
if Keyword[Len+1] = ‘<‘ then

NotInTag := False;
Len := 0

end else
if (Len = 1) then
{ start with letter ?? }
if not (Keyword[1] in StartSet) then
Len := 0

end;
if (Len > 2) and NotInTag then
AddKeyword(LowerCase(Keyword),WebPage);

readln(f)
end;
close(f)

end else
writeln(‘’,FileName); { failed to open }

end {ScanPage};
procedure ScanPages(const Path: ShortString);
var SRec: TSearchRec;
begin
if FindFirst(‘*.*’, faDirectory, SRec) = 0 then
repeat
if (SRec.Attr AND faDirectory) = faDirectory then
begin
if (SRec.Name[1] <> ‘.’) then { skip ‘.’ and ‘..’ }
if Pos(‘_vti’,SRec.Name) = 0 then begin
{ _vti_cnf etc. }
ChDir(SRec.Name);
if IOResult = 0 then begin
writeln(‘<I>’,SRec.Name,’</I>’);
writeln(‘’);
ScanPages(Path+’/’+SRec.Name); { recursive!! }
writeln(‘’);
ChDir(‘..’)

end else
writeln(‘<I>’,SRec.Name,’</I> - locked’)

end
end else
{ file }
if ((Pos(‘.HTM’,UpperCase(SRec.Name)) > 0) or
(Pos(‘.ASP’,UpperCase(SRec.Name)) > 0)) and
(Pos(‘.bak’,SRec.Name) = 0) then begin
WebPage[WebPages] := Path + ‘/’ + SRec.Name;
ScanPage(SRec.Name,WebPages);
Inc(WebPages)

end
until FindNext(SRec) <> 0;
FindClose(SRec)

end {ScanPages};
procedure WriteTree(var IndexFile: TIndexFile; root: TTree);
begin
if root.Prev <> nil then
WriteTree(IndexFile,root.Prev);

write(IndexFile,root.Node);
if root.Next <> nil then
WriteTree(IndexFile,root.Next);

end {WriteTree};
var
i: Integer;
PageFile: Text;
IndexFile: TIndexFile;

initialization
ChDir(‘..’);
if IOResult <> 0 then { skip };
writeln(‘content-type: text/html’);
writeln;
writeln(‘<HTML>’);
writeln(‘<BODY BACKGROUND="/gif/back.gif">’);
writeln(‘<H2>IndexBob</H2>’);
writeln(‘Creating index for: ‘,website);
writeln(‘<P>’);
writeln(‘’);
ScanPages(website);
writeln(‘’);
ChDir(‘cgi-bin’);
if IOResult <> 0 then { skip };
assign(PageFile,’pages.bob’);
try
rewrite(PageFile);
for i:=0 to WebPages-1 do
writeln(PageFile,WebPage[i]);

finally
close(PageFile)

end;
assign(IndexFile,’index.bob’);
if root <> nil then
try
rewrite(IndexFile);
WriteTree(IndexFile,root)

finally
close(IndexFile)

end;
writeln(‘<HR>’);
writeln(‘’);
writeln(‘Webpages: ‘,WebPages);
writeln(‘
Keywords: ‘,Keywords);
writeln(‘’);
writeln(‘<HR>’);
writeln(‘</BODY>’);
writeln(‘</HTML>’)

finalization
root.Free

end.

26 The Delphi Magazine Issue 29

website with 199 pages (and over
8,000 keywords) and return the
HTML output. The filesize of the
index is 8,000+ times 64 bytes,
which is slightly under 0.5Mb.
However, since we accepted any
keyword with three or more char-
acters, we also accepted dozens (if
not hundreds) of keywords like
the, and and youwhich may occur in
every webpage and are not very
useful when building a keyword
index. We’ll keep that in mind as a
possible enhancement for next
month...

Figure 2 shows the output from a
slightly more advanced version of
the Index program, but it is a “live”
screenshot from our own company
intranet server.

So, for a website with up to 255
pages, we’ve just seen two CGI
applications that can help us to
produce an index of keywords and
URL webpage names. The scanner
first counts the .HTM and .ASP
webpages as well as the length of
the longest keyword, and the
indexer then creates an internal
binary tree with the keyword infor-
mation and set of webpage IDs and
writes it to disk as a sorted file of
TNode.

The next step is the real search
engine itself: another CGI applica-
tion that accepts a keyword, loads
the keyword index file in a bal-
anced binary tree, finds the key-
word in the tree (or not as the case
may be) and produces a list of web-
page names from the set of URL IDs
and the file of webpage names The
remainder of this article will show
a very basic first approach to this
search engine. Next time we’ll
explore a number of additional
features and enhancements.

Dr.Bob’s CGI
First of all, we need a supporting
unit (small and fast if possible) to
handle CGI requests. In my previ-
ous internet-related Under Con-
struction columns, I played with a
TDosEnvironment component that
we could create dynamically to
read DOS environment variables
etc. However, every CGI applica-
tion that I wrote would start out
with a copy of the very first
(debug) CGI application, as so

much code was ready to be used
again. And while I was using com-
ponents, I was making bad use of
re-use techniques, so I decided to
put all the CGI techniques in one
unit with an interface to the
obtained CGI query values. The
end result is the DrBobCGI unit,
which can be put in the uses clause
of any CGI application and will
shield us from any further low-level
CGI details from now on. All we
need to do is call the Values func-
tion with the name of the input field
we’re looking for as the argument
(Keyword in our case):

function Value(const Field:
ShortString): ShortString;

This single function is actually all
we need to communicate with the
CGI query. The source code for the
DrBobCGI unit is on this month’s
disk. Note that the ContentLength is
also defined in the interface of
DrBobCGI, so we can examine this
and decide not to bother calling
Value if ContentLength is 0.

IndexBob
Apart from the Value function from
DrBobCGI we also need to create a
balanced binary tree, load the
sorted indexfile of keywords, the
file of URL webpage names, obtain
the required keyword (using the
Value function from DrBobCGI),
search for the keyword in the
binary tree and present the associ-
ated URLs to the user.

The interface part of the Index-
Bob unit is almost the same as the

interface part of the Index unit,
with the exception of the TTree
class, which is slightly different: in
Index the binary tree is created
dynamically, in IndexBob the tree
can be created as a balanced
binary tree and loaded from disk.

We can obtain the number of
keywords by looking at the filesize
of INDEX.BOB. Using the number of
keywords, we can call CreateRoot
to create a full tree for the highest
power of 2 minus 1 that’s just
smaller than this number of key-
words (so for 100 keywords, we
first create a tree with
1+2+4+8+16+32 = 63 nodes, for
example). After that first “com-
plete” binary tree, we need to add a
number of “extra” nodes, namely
the number of keywords minus the
nodes already created (in the
above example, that’s 100 minus 63
= 37 extra nodes) using a call to
CreateLeafs with the number of
extra nodes to create (Listing 3).

Once we’ve created a balanced
binary tree (with the same number
of nodes as records in the file of
nodes) we can “walk” the tree in
order and read the nodes (which
are also in alphabetically sorted
order on the disk) as shown in
ReadNode in Listing 3.

The unit does all the work, all the
main CGI program IndexBob needs
to do is include the unit IndexBob
(along with DrBobCGI) and use the
Keyword (calling Values from DrBob-
CGI) to search for a Found set of
URLs (calling FindKeywordInPages
from IndexBob) and presenting the
URLs as an HTML formatted list.

➤ Figure 2

January 1998 The Delphi Magazine 27

➤ Listing 3

See Listing 4. The webpages (URLs)
that contain the keyword we’re
looking for are presented in a list,
where we can click on the URL
itself, by embedding them in a

 ...

hyperlink. The only thing we’re
missing here is some more infor-
mation to accompany the URL, but
that’s also a topic we will return to
next month...

This shows how we can search
for a single keyword in the website
index and using an HTML CGI form
and IntraBob, we can show how
this would look like in real life. The
HTML CGI form is called
HOME.HTM (a less verbose ver-
sion is included on the disk), see
Listing 5.

Using IntraBob v2.5, we can see
the mini website search engine in
action (Figure 3). By the time you
read this article you can also try
the real thing on my website at
www.drbob42.com. The result

from the search for the keyword
iTec can be seen in Figure 4: a total
of 6 webpages are found.

If you try the final website
search engine IndexBob (either by
using IntraBob or by running it on a
web server, such as from my web-
site), you’ll notice that the speed is
very good. Loading the index and
locating the keyword is done
within 0.1 to 0.3 seconds and gen-
erally I get an answer back within
one second. Sending that output
webpage over the internet back to
my browser takes more time than

unit IndexBob;
{$I-}
interface
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
type
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
TTree = class
Node: TNode;
constructor Create;
destructor Destroy; override;
function FindKeywordInPages(const KeyWord: TKeyword):
TPageSet;

private
Prev,Next: TTree;

end {TTree};
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
implementation
function Pages(PageSet: TPageSet): Byte;
{ return the number of “1" (set) bits in the set, which
does mean: the number of URLs containing the keyword }

var B: Byte;
begin
Result := 0;
for B := 0 to MaxPage do
if B in PageSet then Result := Result + 1

end {Pages};
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
function TTree.FindKeywordInPages(const Keyword: TKeyword):
TPageSet;

var tmp: TTree;
begin
Result := []; { assume keyword isn’t found }
tmp := root;
repeat
if tmp.Node.Keyword > Keyword then
tmp := tmp.Prev

else
if tmp.Node.Keyword < Keyword then
tmp := tmp.Next

until (tmp = nil) or (tmp.Node.Keyword = Keyword);
if tmp <> nil then
Result := tmp.Node.URLs { keyword is found }

end {FindKeywordInPages};
function CreateRoot(depth: Integer): TTree;
var r: TTree;
begin
if depth > 0 then begin
r := TTree.Create;
r.Prev := CreateRoot(depth-1);
r.Next := CreateRoot(depth-1);
CreateRoot := r

end else
CreateRoot := nil

end {CreateRoot};
procedure CreateLeafs(var number: Integer; root: TTree);
begin
if root.Prev <> nil then begin
CreateLeafs(number,root.Prev);
if number > 0 then
CreateLeafs(number,root.Next)

end else begin
root.Prev := TTree.Create;
Dec(number);
if number > 0 then begin
root.Next := TTree.Create;
Dec(number)

end
end

end {CreateLeafs};
procedure ReadNode(var IndexFile: TIndexFile; root: TTree);
begin
if root.Prev <> nil then
ReadNode(IndexFile, root.Prev);

read(IndexFile,root.Node);
Inc(Keywords);
if root.Next <> nil then
ReadNode(IndexFile, root.Next)

end {ReadNode};
var
PageFile: Text;
IndexFile: TIndexFile;
total,depth,i: Integer;

initialization
writeln(‘content-type: text/html’);
writeln;
writeln(‘<HTML>’);
writeln(‘<BODY BACKGROUND="/gif/back.gif">’);
writeln(‘<H2>IndexBob</H2>’);
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
writeln(‘<P>’);
writeln(‘<FORM METHOD="POST" ‘+
‘ACTION="/cgi-bin/indexbob.exe">’);

writeln(‘<TABLE>’);
writeln(‘<TR><TD><I>Search again:</I></TD>’);
writeln(‘<TD><INPUT TYPE="TEXT" NAME="Keyword" ‘+
‘SIZE=29></TD></TR>’);

writeln(‘<TR><TD></TD><TD>’);
writeln(‘<INPUT TYPE="SUBMIT" VALUE="Search">’);
writeln(‘<INPUT TYPE="RESET" VALUE="Reset"></TD></TR>’);
writeln(‘</TABLE>’);
writeln(‘</FORM>’);
{ ** CODE OMITTED: SEE DISK FOR FULL LISTING ** }
writeln(‘<HR>’);
assign(PageFile,’pages.bob’);
reset(PageFile);
if IOResult = 0 then begin
while not eof(PageFile) do begin
readln(PageFile,WebPage[WebPages]);
Inc(WebPages)

end;
close(PageFile)

end;
assign(IndexFile,’index.bob’);
reset(IndexFile);
total := FileSize(IndexFile);
if IOResult = 0 then begin
if total = 1 then
root := TTree.Create

else begin
{total > 1}
depth := 0;
i := 1;
repeat
i := i SHL 1;
Inc(depth)

until i >= total;
Dec(depth);
i := total - (i SHR 1) + 1;
root := CreateRoot(depth);
if i > 0 then
CreateLeafs(i, root)

end;
if total > 0 then
ReadNode(IndexFile, root);

close(IndexFile)
end

finalization
writeln(‘<HR>’);
writeln(‘’);
writeln(‘Webpages: ‘,WebPages);
writeln(‘
Keywords: ‘,Keywords);
writeln(‘’);
writeln(‘<HR>’);
writeln(‘</BODY>’);
writeln(‘</HTML>’);
root.Free

end.

28 The Delphi Magazine Issue 29

actually looking for the index in the
indexfile. Of course, this may
change when we start to look for
more keywords, or combine que-
ries, but we’ll find out next time...

Future
Of course, IndexBob isn’t done yet.
As I’ve indicated, next month we
will see how to extend and enhance
IndexBob. Among the ideas for
improvements are: searching for
multiple keywords (using AND),
searching for alternatives (using

➤ Figure 4

OR), searching using filters (using
NOT), showing part of the content of
the found URL (like the page Title)
instead of just the URL itself and
limiting the indexfile by filtering
common words.

Finally, I’ve had some ideas to
speed things up even further and
to enable IndexBob to be used for
websites with more than 255 web-
pages.

I’m also investigating the possi-
bility of searching for only sub-
parts of a website (for example

➤ Figure 3

only search for “database” in my
“book reviews” section, or only
search for “profiler” in my
“articles” and “tips” sections).

One thing that I’ve added
already is a search logging ability,
so I can find out how other people
are using the search engine on my
website, to give me feedback on
how to possibly improve both the
search engine and the website
itself (Figure 5).

If you have any other ideas for
improvements, or just want to talk
about IndexBob, don’t hesitate to
send me some feedback in my
special newsgroup drbob.internet.
tools at news.shoresoft.com
(there’s a link on my website). I
welcome feedback and it can only
help us all.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer tech-
nical consultant using Delphi,
C++Builder and JBuilder for Bole-
sian (www.bolesian.com), a free-
lance technical author for The
Delphi Magazine and co-author
of The Revolutionary Guide to
Delphi 2. Bob is now working on
an electronic knowledge base
called Delphi Internet Solutions,
with topics about Delphi and the
internet/intranet. In his spare
time, Bob likes to watch video
tapes of Star Trek Voyager and
Deep Space Nine with his 3.5-year
old son Erik Mark Pascal and his
1-year old daughter Natasha
Louise Delphine.

{$APPTYPE CONSOLE}
uses
SysUtils,
DrBobCGI, // read Keyword from CGI “Form”
IndexBob; // read index.bob and pages.bob

var
Keyword: ShortString;
Found: TPageSet;
i: Integer;

begin
writeln(‘<H2>IndexBob Search Results</H2>’);
Keyword := Value(‘Keyword’);
writeln(‘Keyword: ’,Keyword,’
’);
if root <> nil then
if Length(Keyword) in [3..MaxKeyword] then
Found := Found * root.FindKeywordInPages(LowerCase(Keyword))

else
Found := []; // no pages found

writeln(‘
’);
writeln(‘’,Pages(Found),’ pages found:’);
writeln(‘’);
for i:=0 to WebPages-1 do
if i in Found then
writeln(‘’,WebPage[i],’’);

writeln(‘’);
end.

➤ Listing 4

<HTML>
<BODY>
<H2>IndexBob</H2>
<FORM METHOD="POST" ACTION="/cgi-bin/indexbob.exe">
Search:
<INPUT TYPE="TEXT" NAME="Keyword" SIZE=29>
<INPUT TYPE="SUBMIT" VALUE="Search">
<INPUT TYPE="RESET" VALUE="Reset">
</FORM>
</BODY>
</HTML>

➤ Listing 5

January 1998 The Delphi Magazine 29

➤ Figure 5

	Website Search Engine
	Website Scanning
	Analysis Results
	WebSite Indexing
	Dr.Bob’s CGI
	IndexBob
	Future

